Learning performance of Tikhonov regularization algorithm with geometrically beta-mixing observations
نویسندگان
چکیده
Estimating the generalization performance of learning algorithms is one of the main purposes of machine learning theoretical research. The previous results describing the generalization ability of Tikhonov regularization algorithm are almost all based on independent and identically distributed (i.i.d.) samples. In this paper we go far beyond this classical framework by establishing the bound on the generalization ability of Tikhonov regularization algorithm with geometrically beta-mixing observations. We first establish two refined probability inequalities for geometrically beta-mixing sequences, and then we obtain the generalization bounds of Tikhonov regularization algorithm with geometrically beta-mixing observations and show that Tikhonov regularization algorithm with geometrically beta-mixing observations is consistent. These obtained bounds on the learning performance of Tikhonov regularization algorithm with geometrically beta-mixing observations are proved to be suitable to geometrically ergodic Markov chain samples and hidden Markov models. & 2010 Elsevier B.V. All rights reserved.
منابع مشابه
A numerical approach for solving a nonlinear inverse diusion problem by Tikhonov regularization
In this paper, we propose an algorithm for numerical solving an inverse non-linear diusion problem. In additional, the least-squares method is adopted tond the solution. To regularize the resultant ill-conditioned linear system ofequations, we apply the Tikhonov regularization method to obtain the stablenumerical approximation to the solution. Some numerical experiments con-rm the utility of th...
متن کاملStability Bounds for Stationary phi-mixing and beta-mixing Processes
Most generalization bounds in learning theory are based on some measure of the complexity of the hypothesis class used, independently of any algorithm. In contrast, the notion of algorithmic stability can be used to derive tight generalization bounds that are tailored to specific learning algorithms by exploiting their particular properties. However, as in much of learning theory, existing stab...
متن کاملAutomatic estimation of regularization parameter by active constraint balancing method for 3D inversion of gravity data
Gravity data inversion is one of the important steps in the interpretation of practical gravity data. The inversion result can be obtained by minimization of the Tikhonov objective function. The determination of an optimal regularization parameter is highly important in the gravity data inversion. In this work, an attempt was made to use the active constrain balancing (ACB) method to select the...
متن کاملA self-adapting and altitude-dependent regularization method for atmospheric profile retrievals
MIPAS is a Fourier transform spectrometer, operating onboard of the ENVISAT satellite since July 2002. The online retrieval algorithm produces geolocated profiles of temperature and of volume mixing ratios of six key atmospheric constituents: H2O, O3, HNO3, CH4, N2O and NO2. In the validation phase, oscillations beyond the error bars were observed in several profiles, particularly in CH4 and N2...
متن کاملTikhonov Regularized Kalman Filter and Its Applications in Autonomous Orbit Determination of BDS
Kalman filter is one of the most common ways to deal with dynamic data and has been widely used in project fields. However, the accuracy of Kalman filter for discrete dynamic system is poor when the observation matrix is ill-conditioned. Therefore, the method for overcoming the harmful effect caused by ill-conditioned observation matrix in discrete dynamic system is studied in this paper. First...
متن کامل